IV.A.6 Production of Hydrogen by Biomass Reforming

نویسندگان

  • David L. King
  • Yong Wang
  • James Cao
  • Gordon Xia
  • Hyun-Seog Roh
  • Alexander Platon
  • Mark Paster
چکیده

Technical Targets The goal of this project is to develop a cost effective and feedstock flexible technology for reforming of biomass feedstocks. The synergistic improvement in reforming catalysts and reaction engineering will help the reforming technology development that meets the following DOE 2010 targets for distributed production of hydrogen from bio-derived renewable liquids: • Cost: $3.60/gge • Total Energy Efficiency: 66%

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Study of Upgrading Catalytic Reforming Unit by Improving Catalyst Regeneration Process to Enhance Aromatic Compounds, Hydrogen Production, and Hydrogen Purity

Catalytic reforming is a chemical process utilized in petroleum refineries to convert naphtha, typically having low octane ratings, into high octane liquid products, called reformates, which are components of high octane gasoline. In this study, a mathematical model was developed for simulation of semi-regenerative catalytic reforming unit and the result of the proposed model was compared with ...

متن کامل

A novel reforming method for hydrogen production from biomass steam gasification.

In this work, an experimental study of biomass gasification in different operation conditions has been carried out in an updraft gasifier combined with a porous ceramic reformer. The effects of gasifier temperature, steam to biomass ratio (S/B), and reforming temperature on the gas characteristic parameters were investigated with and without porous ceramic filled in reformer. The results indica...

متن کامل

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

A CFD Simulation of Hydrogen Production in Microreactors

In this study, the modeling of hydrogen production process in microreactors by methanol-steam reforming reaction is investigated. The catalytic reaction of methanol-steam reforming producing hydrogen is simulated considering a 3D geometry for the microreactor. To calculate diffusion among species, mixture average correlations are compared to Stephan-Maxwell equations. The reactions occurring in...

متن کامل

The molecules of forgetfulness.

2. Productivity at this level means that the production costs of H 2 (expressed as the cost in US dollars per joule of calorific value contained in the molecule) are two to three times higher than for natural gas 4,5. However, taking into account the transportation and distribution costs of natural gas, and how pure you want the H 2 to be, the comparative cost of H 2 production can vary. Biomas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005